The Horn Tarski problem

Egbert Thümmel

May 11, 2012

Abstract

In 1948 Horn and Tarski asked whether the notions of a σ-finite cc and a σ-bounded cc ordering are equivalent. We give a negative answer to this question.

When analyzing Boolean algebras carrying a measure, Horn and Tarski [HT48] defined the following two notions:

Definition 1. An ordering \mathbb{P} is called
(i) σ-bounded cc if $\mathbb{P}=\bigcup_{n \in \omega} P_{n}$, where each P_{n} has the $n+2$-cc.
(ii) σ-finite cc if $\mathbb{P}=\bigcup_{n \in \omega} P_{n}$, where each P_{n} has the ω-cc.

Here an ordering or its subset has the κ-cc (κ-chain condition) for a cardinal κ if it contains no antichain (set of pairwise orthogonal elements) of size κ.

Clearly, any σ-bounded cc ordering is σ-finite cc (and both are ω_{1}-cc - also called ccc). Horn and Tarski asked whether these two classes coincide:

Problem Horn Tarski 1948 [HT48] Is every σ-finite cc ordering also σ-bounded cc?
There is a standard way how to map an ordering densely into a complete Boolean algebra. This mapping preserves our two properties. The Horn Tarski problem can therefore be formulated in terms of Boolean algebras as well. It is easy to see that a Boolean algebra carrying a strictly positive measure is σ-bounded cc (take as P_{n} the set of elements of measure at least $1 / n$). If the Boolean algebra carries only a strictly positive exhaustive submeasure this property could get lost, but still the Boolean algebra will be σ-finite cc (take the same P_{n}). The question, whether any Boolean algebra carrying a strictly positive exhaustive submeasure carries also a strictly positive measure, is one formulation of the famous Control measure problem. It was therefore expected that an anticipated negative solution of this problem will give also a counterexample to the Horn Tarski problem. But when such an example solving the Control measure problem was constructed by M. Talagrand ([Tal08]) it turned out that it is even σ-bounded cc, so the Horn Tarski problem remained open. We will construct here a counterexample to the Horn Tarski problem.

Theorem 1. There exists an ordering which is σ-finite cc but not σ-bounded cc.
The technique used in the construction appeared first in [Tod91] and is further developed in [BPT] :

For a subset F of a topological space X let F^{d} denote the set of all accumulation points.

Definition 2. For a topological space X the Todorcevic ordering $\mathbb{T}(X)$ is the set of all subsets F of the space which are a finite union of converging sequences including their limit points. The order relation is defined by such extensions which preserve isolated points, i.e. $F_{1} \leq F_{2}$ if $F_{1} \supseteq F_{2}$ and $F_{1}^{d} \cap F_{2}=F_{2}^{d}$.

We start with the set $T=\bigcup_{\alpha<\omega_{1}}{ }^{\alpha+1} \omega$. This set is made into a tree by the order of inclusion. We will extend the order of the tree into a linear one. Define an equivalence relation for the elements of the tree such that two elements are equivalent if they have the same predecessors, i.e. $s \sim t$ if $\forall r \in T(r \subset s \leftrightarrow r \subset t)$. Equip every equivalence class under \sim with an order \preceq of type ω^{*}, i.e. ω ordered in the reverse. Then we can define the lexicographical order \leq on T by $s<t$ if either $s \subset t$ or there are $s^{\prime} \subseteq s$ and $t^{\prime} \subseteq t$ such that $s^{\prime} \sim t^{\prime}$ and $s^{\prime} \prec t^{\prime}$. Take the interval topology τ_{\leq}on T. We apply the operator \mathbb{T} on this linearly ordered topological space (T, τ_{\leq}) to obtain the Todorcevic ordering $\mathbb{P}=\mathbb{T}(T)$. This will be the example which proves the theorem:

Claim 1. \mathbb{P} is not σ-bounded cc.
Proof. Assume by contradiction that $\mathbb{P}=\bigcup_{n \in \omega} P_{n}$, with each P_{n} being $n+2$-cc, witnesses that \mathbb{P} is σ-bounded cc. For $n<\omega$ define functions $f_{n}: T \longrightarrow n+2$ such that $f_{n}(s)$ is the maximal length of an antichain which is a subset of the set $P_{n}(s)=\left\{F \in P_{n}: \exists t \in F^{d}(t \supseteq s)\right\}$. The function f_{n} is decreasing with respect to \subseteq. It follows that for any $s \in T$ there is an $s^{\prime} \supseteq s$ such that $f_{n}\left(s^{\prime}\right)=f_{n}(t)$ for all $t \supseteq s^{\prime}$. We find a increasing (with respect to \subseteq) sequence $\left\{s_{n}\right\}$ such that $f_{n}\left(s_{n}\right)=f_{n}(t)$ for all $t \supseteq s_{n}$. For an arbitrary $s \in T$ with $s \supset \bigcup_{n<\omega} s_{n}$ we have therefore $f_{n}(s)=f_{n}(t)$ for all $t \supseteq s$ and $n<\omega$. Fix such an s and let $f(n)=f_{n}(s)$. For $n<\omega$ choose in $P_{n}\left(s^{\wedge} n\right)$ an antichain $\left\{F_{n, i}\right\}_{i<f(n)}$ and $t_{n, i} \supseteq s^{\wedge} n$ such that $t_{n, i} \in\left(F_{n, i}\right)^{d}$ for $i<f(n)$. Then $\left\{t_{n, i}\right\}_{n<\omega, i<f(n)}$ converges to s (if not finite) and so does $\left\{s^{\wedge} n\right\}_{n<\omega}$, i.e. $F=\left\{t_{n, i}\right\}_{n<\omega, i<f(n)} \cup\left\{s^{\wedge} n\right\}_{n<\omega} \cup\{s\} \in \mathbb{P}$. Notice that F is orthogonal to all $F_{n, i}$ for $n<\omega$ and $i<f(n)$ since $t_{n, i}$ is isolated in F and an accumulation point in $F_{n, i}$. But F has to be contained in some P_{n}, hence $\left\{F_{n, i}\right\}_{i<f(n)} \cup\{F\}$ is an antichain in $P_{n}(s)$ and therefore $f_{n}(s) \geq f(n)+1$, a contradiction.

Claim 2. \mathbb{P} is σ-finite $c c$.
Proof. We argue in the order \leq. The set $\left\{s^{\wedge} k\right\}_{k<\omega}$ is a decreasing sequence with infimum s. We can therefore for any $F \in \mathbb{P}$ fix a $k(F)<\omega$ such that, for $s \in F^{d}$, the open intervals $\left(s, s^{\wedge} k(F)\right)$ are disjoint from F^{d}. No increasing sequence of (T, \leq) has a supremum. This means that any sequence which converges to s is above s with the possible exception of finitely many elements. Therefore $R(F)=F \backslash\left(\bigcup_{s \in F^{d}}\left(s, s^{\wedge} k(F)\right) \cup F^{d}\right)$ is finite. Let

$$
P_{k, n, m}=\left\{F \in \mathbb{P} \quad: \quad k(F)=k \&\left|F^{d}\right|=n \&|R(F)|=m\right\} .
$$

Surely $\mathbb{P}=\bigcup_{k, n, m<\omega} P_{k, n, m}$. We have to show that all $P_{k, n, m}$'s are finite cc. Assume by contradiction that $\left\{F_{i}\right\}_{i<\omega} \subset P_{\bar{k}, \bar{n}, \bar{m}}$ is an infinite antichain for some fixed $\bar{k}, \bar{n}, \bar{m}$. Let $\left(F_{i}\right)^{d}=\left\{s_{i}^{n}\right\}_{n<\bar{n}}$ and $R\left(F_{i}\right)=\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ be enumerated and put $F_{i}^{n}=F_{i} \cap\left(s_{i}^{n}, s_{i}^{n} \bar{k}\right)$. Then F_{i}^{n} is a sequence with limit s_{i}^{n} and $F_{i} \backslash\left(F_{i}\right)^{d}=\bigcup_{n<\bar{n}} F_{i}^{n} \cup\left\{r_{i}^{m}\right\}_{m<\bar{m}}$ is the set of isolated points of F_{i}. We say that $\{i, j\} \in[\omega]^{2}$, $i<j$, has color

$$
\begin{aligned}
& \left(1, n, n^{\prime}\right) \text { if } s_{i}^{n} \in F_{j}^{n^{\prime}} \\
& (2, n, m) \text { if } s_{i}^{n}=r_{j}^{m} \\
& \left(3, n, n^{\prime}\right) \text { if } s_{j}^{n} \in F_{i}^{n^{\prime}} \\
& (4, n, m) \text { if } s_{j}^{n}=r_{i}^{m}
\end{aligned}
$$

for $n, n^{\prime}<\bar{n}$ and $m<\bar{m}$. Since $\left\{F_{i}\right\}_{i<\omega}$ was assumed to be an antichain, there must be for any $\{i, j\} \in[\omega]^{2}$ a point which is isolated in F_{i} and not isolated in F_{j} or vice versa, i.e. any pair $\{i, j\}$ obtains at least one color. Ramsey's theorem asserts that there must be an infinite subset of ω homogeneous in one color. For notational convenience, we assume that ω itself is this homogeneous set. We are going to derive a contradiction for each of the colors.

1. ω is homogeneous in color $\left(1, n, n^{\prime}\right)$.

Note that $s \in\left(t, t^{\wedge} \bar{k}\right)$ implies $s \supset t$ and $\left(s, s^{\wedge} \bar{k}\right) \subset\left(t, t^{\wedge} \bar{k}\right)$.
Homogeneity in color ($1, n, n^{\prime}$) implies $s_{i}^{n} \in F_{j}^{n^{\prime}} \subseteq\left(s_{j}^{n^{\prime}}, s_{j}^{n^{\prime}} \backslash \bar{k}\right)$, i.e. $s_{i}^{n} \supset s_{j}^{n^{\prime}}$ for all $i<j$. We have $s_{i-1}^{n} \supset s_{i}^{n^{\prime}}, s_{i+1}^{n^{\prime}}$, hence $s_{i}^{n^{\prime}} \subseteq s_{i+1}^{n^{\prime}}$ or $s_{i}^{n^{\prime}} \supset s_{i+1}^{n^{\prime}}$. Consider the first case. The order \leq is stronger than \subseteq, therefore $s_{i}^{n^{\prime}} \leq s_{i+1}^{n^{\prime}}<s_{i-1}^{n} \in F_{i}^{n^{\prime}} \subseteq\left(s_{i}^{n^{\prime}}, s_{i}^{n^{\prime}} \cap \bar{k}\right)$. The latter is an interval, hence $s_{i+1}^{n^{\prime}}=s_{i}^{n^{\prime}}$ or $s_{i+1}^{n^{\prime}} \in\left(s_{i}^{n^{\prime}}, s_{i}^{n^{\prime}} \wedge \bar{k}\right)$, therefore $\left(s_{i+1}^{n^{\prime}}, s_{i+1}^{n^{\prime}} \wedge \bar{k}\right) \subseteq\left(s_{i}^{n^{\prime}}, s_{i}^{n^{\prime}} \neg \bar{k}\right)$. But $s_{i}^{n} \notin\left(s_{i}^{n^{\prime}}, s_{i}^{n^{\prime}}-\bar{k}\right)$. This follows from the definition of $\bar{k}=k\left(F_{i}\right)$ at the beginning of the proof. On the other hand, $s_{i}^{n} \in F_{i+1}^{n^{\prime}} \subseteq\left(s_{i+1}^{n^{\prime}}, s_{i+1}^{n^{\prime}} \sim \bar{k}\right)$ by homogeneity - a contradiction. So the second case $s_{i}^{n^{\prime}} \supset s_{i+1}^{n^{\prime}}$ must hold for all $i<\omega$, i.e. the $s_{i}^{n^{\prime}}$'s are a strictly decreasing sequence in the tree T, again a contradiction.
2. ω is homogeneous in color $(2, n, m)$.

From $s_{1}^{n}=r_{2}^{m}$ and $s_{0}^{n}=r_{2}^{m}$ and $s_{0}^{n}=r_{1}^{m}$ (homogeneity in color $(2, n, m)$) we conclude $s_{1}^{n}=r_{1}^{m}$ - a contradiction since s_{1}^{n} is an accumulation point in F_{1} and r_{1}^{m} is isolated in F_{1}.
3. ω is homogeneous in color $\left(3, n, n^{\prime}\right)$.

Assume that there are $i<j$ such that $s_{i}^{n}=s_{j}^{n}$. Then $s_{i}^{n}=s_{j}^{n} \in F_{i}^{n^{\prime}}$, but s_{i}^{n} is an accumulation point of F_{i} whereas $F_{i}^{n^{\prime}}$ contains only isolated points of F_{i} - a contradiction. So the s_{j}^{n} 's are pairwise different for $j<\omega$. Homogeneity in color ($3, n, n^{\prime}$) implies that all $s_{j}^{n}, j>0$, are in $F_{0}^{n^{\prime}}$, the set $\left\{s_{j}^{n}\right\}_{j=1}^{\omega}$ therefore converges to $s_{0}^{n^{\prime}}$. By the same argument, we obtain that $\left\{s_{j}^{n}\right\}_{j=2}^{\omega}$ converges to $s_{1}^{n^{\prime}}$, hence $s_{0}^{n^{\prime}}=s_{1}^{n^{\prime}}$. Again by homogeneity $s_{1}^{n} \in F_{0}^{n^{\prime}} \subseteq\left(s_{0}^{n^{\prime}}, s_{0}^{n^{\prime}} \backslash \bar{k}\right)=\left(s_{1}^{n^{\prime}}, s_{1}^{n^{\prime}} \backslash \bar{k}\right)$ - a contradiction since $s_{1}^{n} \notin\left(s_{1}^{n^{\prime}}, s_{1}^{n^{\prime}} \backslash \bar{k}\right)$ by definition of $\bar{k}=k\left(F_{1}\right)$.
4. ω is homogeneous in color $(4, n, m)$.

The same as color $(2, n, m)$.
For all the colors we obtained a contradiction, so an infinite antichain cannot exist.

References

[BPT] B. Balcar, T. Pazák, and E. Thümmel. On Todorcevic orderings. In preparation.
[HT48] A. Horn and A. Tarski. Measures in Boolean algebras. Trans. Amer. Math. Soc., 64:467497, 1948.
[Tal08] M. Talagrand. Maharam's problem. Ann. of Math., 168(3):981-1009, 2008.
[Tod91] S. Todorčević. Two examples of Borel partially ordered sets with the countable chain condition. Proc. Amer. Math. Soc., 112(4):1125-1128, 1991.

